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Spatial Statistics and Information Geometry for
Parametric Statistical Models of Galaxy
Clustering

C. T. J. Dodson1

Received March 2, 1999

Poisson spatial processes of points and of extended objects representing smoothed
clusters of galaxies are considered; some results are obtained for planar
representations of random filaments, which may help interpret the findings of
the Las Campanas Redshift Survey. Based on a model for the void probability
function, a family of gamma-related distributions is investigated as a three-
dimensional model for the clustering of galaxies. The unclustered models in this
family correspond to the random case and to maximum information-theoretic
entropy. The Riemannian information metric and Gaussian curvature are derived
for the parameter space of the family of models, which provides a background
on which to write dynamics for cluster evolution.

1. INTRODUCTION

For a general account of large-scale structures in the universe, see, for
example, Peebles [18] and Fairall [9], the latter providing a comprehensive

atlas. See also Cappi et al. [1], Coles [2], Labini et al. [13, 14], Vogeley et
al. [21], and van der Weygaert [22] for further recent discussion of large

structures. The Las Campanas Redshift Survey is currently the most compre-

hensive deep survey, providing some 26,000 data points in a slice out to 500

h
2 1 Mpc. Doroshkevich et al. [7] (cf. also Fairall [9 §5.4] and his Figure

5.5) revealed a rich texture of filaments, clusters and voids and suggested

that it resembled a composite of three apparently Poisson processes:

1. Superlarge-scale sheets: 60% of galaxies, characteristic separation

about 77 h 2 1 Mpc.
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2. Rich filaments: 20% of galaxies, characteristic separation about 30

h
2 1 Mpc.

3. Sparse filaments: 20% of galaxies, characteristic separation about 13
h 2 1 Mpc.

There is a body of theory that provides the means to calculate the variance

of density in planar Poisson processes of arbitrary rectangular elements, using

arbitrary finite cells of inspection [3]. We provide details of this method. In

principle, it may be used to interpret the survey data by finding a best fit for

filament and sheet sizesÐ and perhaps their size distributionsÐ and detecting
departures from Poisson processes. For analyses using `counts in cells’ for

other surveys, see Efstathiou [8] and Szapudi et al. [19]. A hierachy of N-

point correlation functions needed to represent clustering of galaxies in a

complete sense was provided by White [23] and he provided explicit formulas,

including their continuous limit.

2. SPATIAL STOCHASTIC PROCESSES

The basic random model for spatial stochastic processes representing

the distribution of galaxies in space is that arising from a Poisson process

of mean density n galaxies per unit volume in a large boxÐ the region covered

by the catalogue data to be studied. Then, the probability of finding exactly

m galaxies in a given sample region of volume v is

Pm 5
(nv)m

m!
e 2 nv for m 5 0, 1, 2, . . . (1)

The Poisson probability distribution (1) has mean equal to its variance, ^ m & 5
Var(m) 5 nv, and this is used as a reference case for comparison with

observational data. Complete sampling of the available space using cells of

volume v will reveal clustering if the variance of local density over the

cells exceeds n. Moreover, the covariance of density between cells encodes
correlation information about the spatial process being observed. The correla-

tion function [18] is the ratio of the covariance of density of galaxies in cells

separated by distance r, divided by the variance of density for the chosen cells,

j (r) 5
Cov(r)

Cov(0)
5

^ m(r0)m(r0 1 r) &
^ m & 2 2 1 (2)

In the absence of correlation, we expect j (r) to be zero or at least decay
rapidly to zero with the separation distance r. In practice, we find that j (r)
resembles an exponential decay for r not too large.

Another way to detect clustering is to use an increasing sequence v1,

v2, . . . of sampling cell volumes; in the absence of correlation we expect that
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the variance of numbers found using these cells will be the average numbers

of galaxies in them, nv1, nv2, . . . , respectively. Suppose that a sampling cell

of volume v1 contains exactly k sampling cells of volume v2; then Var1, the
variance of density of galaxies found using v1, is expressible as

Var1 5
1

k
Var2 1

k 2 1

k
Cov1,2 (3)

where Var2 is the variance found using the smaller cells and Cov1,2 is the

average covariance among the smaller cells in the larger cells. As k ® ` ,

so (1/k) Var2 ® 0 and Var1 tends to the mean covariance among points inside

the v1 cells. Now, the mean covariance among points inside v1 cells is the

expectation of the covariance between pairs of points separated by distance

r, taken over all possible values for r inside a v1 cell. Explicitly

Var1 5 #
D

0

Cov(r) b(r) dr (4)

where b is the probability density function for the distance r between pairs

of points chosen independently and at random in a v1 cell and D is the

diameter or maximum dimension of such a cell.

Ghosh [10] gave some examples of different functions b and some

analytic results are known for covariance functions arising from spatial point

processesÐ by representing the clusters as `smoothed out’ lumps of matterÐ
see ref. 3 for the case of arbitrary rectangles in planar situations. It is conve-

nient to normalize Eq. (4) by division through by Cov(0) 5 Var(0), which

is known for a Poisson process; this gives the `between-cell’ variance for

complete sampling using v1 cells. Then we obtain

Var1 5 Var(0) #
D

0

a (r)b(r) dr (5)

where a is the point autocorrelation function for the particular type of lumps

of matter being used to represent a cluster of galaxies; typically, a (r) ’ e 2 r/d

for `small’ r and d is of the order of the smallest dimension of a cluster.

Since it involves finite cells, Var1 is in principle measurable, so (5) can

be compared with observational data once the type of sampling cell and
representative extended matter object are chosen. We return to this in the

sequel and provide examples for a two-dimensional model. From Labini et
al. [14] we note that experimentally for clusters of galaxies

j (r) ’ 1 25

r 2
1.7

with r in h 2 1 Mpc (6)

which for 2 , r , 10 resembles e 2 r/d for suitable d near 1.8.
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3. GALACTIC CLUSTER SPATIAL PROCESSES

From the atlases shown in Fairall [9] and surveys discussed by Labini

et al. [14], one may estimate in a planar slice a representative galactic `wall’

filament thickness of about 5 h
2 1 Mpc and a wall `thickness-to-length’ aspect

ratio A in the range 10 , A , 50. Then, in order to represent galactic
clustering as a Poisson process of wall filaments of length l and width v ,

we need the point autocorrelation function a for such filaments. In two

dimensions it was shown in ref. 3 that the function a is given in three parts

for rectangles of length l and width v by the following.

For 0 , r # v

a 1(r) 5 1 2
2

p 1 r

l
1

r

v
2

r 2

2 v l 2 (7)

For v , r # l

a 2(r) 5
2

p 1 arcsin
v
r

2
v
2 l

2
r

v
1 ! 1 r 2

v 2 2 1 2 2 (8)

For l , r # ! ( l 2 1 v 2)

a 3(r) 5
2

p 1 arcsin
v
r

2 arccos
l
r

2
v
2 l

2
l

2 v
2

r 2

2 l v

1 ! 1 r 2

l 2 2 1 2 1 ! 1 r 2

v 2 2 1 2 2 (9)

For small r, as expected even in three dimensions, a (r) ’ e 2 2r/ p v .
Note that for random squares of side length s, v 5 l 5 s and we have

only two cases:

For 0 , r # s

a 1(r) 5 1 2
2

p 1 2r

s
2

r 2

2s2 2 (10)

For s , r # ! (2s2)

a 3(r) 5
2

p 1 arcsin
s

r
2 arccos

s

r
2 1 2

r 2

2s2 1 2 ! 1 r 2

s2 2 1 2 2 (11)

This case may be used to represent in two dimensions clusters of galaxies

as a Poisson process of smoothed-out squares of matterÐ the sheetlike ele-

ments of Doroshkevich et al. [7].
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Next we need b, the probability density function for the distance r
between pairs of points chosen independently and at random in a suitable

inspection cell. From ref. 10 for square inspection cells of side length x, for
0 # r # x

b(r, x) 5
4r

x4 1 p x2

2
2 2rx 1

r 2

2 2 (12)

and for x # r # D 5 ! 2x

b(r, x) 5
4r

x4 1 x2 1 arcsin 1 x

r 2 2 arccos 1 x

r 2 2 1 2x ! (r 2 2 x2)

2
1

2
(r 2 1 2x2) 2 (13)

A plot of this function is given in Fig. 1.

Ghosh [10] gave also the form of b for other types of cells; for arbitrary

rectangular cells those expressions can be found in ref. 3. It is of interest to

note that for small values of r, so r ¿ D, the formulas for plane convex
cells of area A and perimeter P all reduce to

b(r, A, P) 5
2 p r

A
2

2Pr 2

A2

which would be appropriate to use when the filaments are short compared

Fig. 1. Probability density function b(r, 1) for the distance r between two points chosen

independently and at random in a unit square.
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with the dimensions of the cell. The filaments are supposed to be placed at

random and independently in the plane and hence their variance contributions

can be summed in a cell to give the variance for zonal averagesÐ that is,
the between-cell variance for complete sampling schemes. So, the variance

between cells is the expectation of the covariance function, taken over all

possible pairs of points in the cell, as given in (5). We rewrite this for square

cells of side length x as

Var(x) 5 Var(0) #
= 2x

0

a (r) b(r, x) dr (14)

Using this equation, in Fig. 2 we plot Var(x)/Var(0) against inspection cell

size x h 2 1 Mpc for the case of filaments with width v 5 5 h 2 1 Mpc and

length l 5 100 h 2 1 Mpc. Note that Var(x) is expressible also as an integral

of the (point) power spectrum over wavelength interval [x, ` ) and that Landy

et al. [15] detected evidence of a strong peak at 100 h
2 1 Mpc in the power

spectrum of the Las Campanas Redshift Survey (cf. also Lin et al. [17]).

These spatial statistical models may be used in two distinct ways. If

observational data are available for Var(x) for a range of x values, for example,

by digitizing catalogue data on 2-dimensional slices, then attempts may be

made to find the best fit for l and v . That would give statistical estimates

of filament sizes on the presumption that the underlying process of filaments
is Poisson. On the other hand, given observed Varobs (x) for a range of x, the

variance ratio of this to (14)

Fig. 2. Plot of the relative between-cell variance for a planar Poisson process of filaments

with width v 5 5 h 2 1 Mpc and length l 5 100 h 2 1 Mpc sampled using square cells of side

length x h
2 1 Mpc from Eq. (14).
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VR(x) 5
Varobs(x)

Var(x)
(15)

will be an increasing function of x if there is a tendency of the filaments

to cluster.

According to the Las Campanas Redshift Survey, some 40% of galaxies

out to 500 h
2 1 Mpc are contained in filaments and the remainder in `sheets,’

which we may interpret perhaps as squares, both apparently following a

Poisson process. Such a composite spatial structure may be represented easily

with our model if the individual Poisson processes are independent; then the

net variance for any choice of inspection cells is the weighted sum of the

variances for the individual processes. So the between-cell variance (14)

becomes a weighted sum of integrals, using the appropriate a functions for
the constituent representative lumps of matterÐ perhaps squares for sheets

and two kinds of filaments, dense and light.

4. GAMMA MODELS FOR INTERGALACTIC VOIDS

A family of parametric statistical models was developed in ref. 5 for

the probability density function for intergalactic void volume V, including

the Poisson process for galaxies as a special case. There are of course many

choices for such families, but we chose one based on gamma distributions

that had been successful in modeling void size distributions in terrestrial

stochastic porous media [6]. The family of gamma distributions has event
space V 5 R +, parameters m , b P R +, and probability density functions

given by

f (V ; m , b ) 5 1 b
m 2

b
V b 2 1

G ( b )
e 2 V b / m (16)

Then VÅ 5 m and Var (V ) 5 m 2/ b and we see that m controls the mean of

the distribution while the spread and shape are controlled by 1/ b , the square

of the coefficient of variation.
The special case b 5 1 corresponds to the situation when V represents

the random or Poisson process (1); then the distribution of void volumes is

exponential with m 5 1/n. The family of gamma distributions (16) can model

a range of stochastic processes corresponding to nonindependent `clumped’

events for b , 1 and dispersed events for b . 1 as well as the random case

[4, 6]. Figure 3 shows a family of gamma distributions, all of unit mean,
with b 5 0.5, 1, 2, 5.

Shannon’ s information-theoretic `entropy’ or `uncertainty’ for such sto-

chastic processes [e.g., 12] is given, up to a factor, by the negative of the

expectation of the logarithm of the probability density function (16), that is,
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Fig. 3. Probability density functions f(V; m , b ) from (16) for gamma distributions representing

the intergalactic void volume V with unit mean m 5 1, and b 5 0.5, 1, 2, 5. The case b 5 1

corresponds to a `random’ distribution from an underlying Poisson process of galaxies, b ,
1 corresponds to clustering, and b . 1 corresponds to dispersion.

Sf ( m , b ) 5 2 #
`

0

log( f (V ; m , b ) f (V ; m , b ) dx (17)

5 b 1 (1 2 b )
G 8( b )

G ( b )
1 log

m G ( b )

b
(18)

In particular, at unit mean, the maximum entropy (or maximum uncertainty)

occurs at b 5 1, which is the random case, and then Sf ( m , 1) 5 1 1 log m .

The `maximum likelihood’ estimates m Ã, b Ãof m , b can be expressed in

terms of the mean and mean logarithm of a set of independent observations
X 5 {X1, X2, . . . , Xn}. These estimates are obtained in terms of the properties

of X by maximizing the `log-likelihood’ function [4, 5] with the following

result

m Ã5 XÅ 5
1

n o
n

i 5 1
Xi (19)

log b Ã 2
G 8( b Ã)

G ( b Ã)
5 log X 2 log XÅ (20)

where log X 5 (1/n) ( n
i 5 1 log Xi.

The usual Riemannian information metric on the parameter space 6 5
{( m , b ) P R + 3 R +} is given by
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ds2
6 5

b
m 2 d m 2 1 1 c 8( b ) 2

1

b 2 d b 2 for m , b P R + (21)

where c ( b ) 5 G 8( b )/ G ( b ) is the digamma function, the logarithmic derivative

of the gamma function. For more details see refs. 16 and 4. The one-dimen-

sional subspace parametrized by b 5 1 corresponds to the available `random’

processes and the `length’ of any path in 6 is given via (21); locally, minimal

paths in 6 are given by the geodesics defined by (21). The Gaussian curvature
of the surface 6 is

K6( m , b ) 5
3 2 4 b c 8( b ) 2 b 2 c 9( b )

2 b ( 2 1 1 b c 8( b ))2 for m , b P R + (22)

K6( m , b ) ® 2 1 as b ® 0 (23)

K6( m , b ) ® 2 2 as b ® ` (24)

Some examples of geodesic sprays in the vicinities of the points

( m , b ) 5 (1, 0.5), (1, 1), (1, 2)

are shown in Fig. 4.

The potential benefit of geometrizing the parameter space of our statisti-

cal models lies in its provision of standard Riemannian metric structure for

applying variational methods and flows to represent evolutionary dynamics.

Then statistical physics is translated into geometrical language with all of
the normal vector calculus, using a metric that is derived from well-tried,

information-theoretic, maximum likelihood principlesÐ which is appropriate

for fitting observational data.

5. GALAXY CLUSTER STATISTICS

We make an attempt here to model the cluster statistics by making use

of the parametric models for the intergalactic void statistics described above.

Observationally, in a region where there are found large voids we would

expect to find a lower local density of galaxies and vice versa. Then the two

random variables, local void volume V and local density of galaxies n, are

presumably inversely related. Many choices are possible; we take a simple
functional form using an exponential and normalize the local density of

galaxies to be bounded above by 1. Denoting the random variable representing

this normalized local density by n , we put

n (V ) 5 e 2 v (25)

This assumption provides through (16) a probability density function for n
parametrized by m , b and given by
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Fig. 4. Geodesic sprays in the gamma manifold, radiating from the points with unit mean

m 5 1, and b 5 0.5, 1, 2 increasing vertically. The case b 5 1 corresponds to an exponential

distribution from an underlying Poisson process of galaxies; b , 1 corresponds to galactic

clustering and b increasing aboved 1 corresponds to the opposite process, dispersion leading

to greater uniformity. The Riemannian metric is given by ds 2
S 5

b
m 2 d m 2 1 1 c 8( b ) 2

1

b 2 d b 2.
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Fig. 5. Probability density function g( n ; m , b ) from (26) for distributions representing the

normalized local density of galaxies, n P [0, 1], with central mean ^ n & 5 0.5 and b 5 0.5, 1,

2, 5. The case b , 1 corresponds to clustering in the underlying spatial process of galaxies;

conversely, b . 1 corresponds to dispersion.

g( n ; m , b ) 5 1 b
m 2

b
n b / m 2 1

G ( b )
) log n ) 1 2 b (26)

This distribution for local galactic number density has mean ^ n & and variance

Var( n ) given by

, n . 5 1 b
b 1 m 2

b

(27)

Var ( n ) 5 1 b
b 1 2 m 2

b

2 1 b
b 1 m 2

2 b

(28)

Figure 5 shows the distribution (26) for mean normalized density ^ n & 5 0.5
and b 5 0.5, 1, 2, 5. Note that as b ® 1, the distribution (26) tends to the

uniform distribution. For b , 1 we have clustering in the underlying process,

with the result that the population has high- and low-density peaks. Other

choices of functional relationship between local void volume and local density

of galaxies would lead to different distributions; for example, n (V ) 5
exp( 2 V k) for k 5 2, 3, . . . , would serve. However, the persisting qualitative
observational feature that would discriminate among the parameters is the

prominence of a central modal valueÐ indicating a smoothed or dispersed

structure, or the prominence of high- and low-density peaksÐ indicating

clustering.
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